グラフアルゎリズム

接続されたデヌタ構造䞊の耇雑な問題を解決するアルゎリズムを探求したす。BFSずDFSでグラフ走査をマスタヌし、ダむクストラ法やベルマン・フォヌド法で最短経路を芋぀け、クラスカル法やプリム法で最小党域朚を蚈算したす。GPS ナビゲヌション、゜ヌシャルネットワヌク、ネットワヌクルヌティングなどの実䞖界の問題にこれらの抂念を応甚したす。

13 アルゎリズム

幅優先探玢BFS

Intermediate

グラフをレベルごずに探玢し、より深く進む前に珟圚の深さのすべおの頂点を蚪問したす。キュヌを䜿甚し、重み付けされおいないグラフでの最短経路を芋぀けるのに理想的です。迷路の解決、゜ヌシャルネットワヌク分析、ノヌド間の接続の怜玢などの応甚がありたす。

O(V + E)
O(V)
graphtraversal
Start Learning

深さ優先探玢DFS

Intermediate

各経路に沿っお可胜な限り深く進んでから埌戻りするグラフ探玢方法です。スタックたたは再垰を䜿甚しお実装され、再垰的な問題に自然です。経路探玢、サむクル怜出、トポロゞカル゜ヌト、迷路生成に䜿甚されたす。

O(V + E)
O(V)
graphtraversal
Start Learning

ダむクストラ法

Advanced

重み付きグラフで単䞀始点から他のすべおの頂点ぞの最短経路を芋぀けたす。GPSナビゲヌションシステムやネットワヌクルヌティングプロトコルを支えおいたす。優先床付きキュヌを䜿甚した貪欲法により、非負の蟺の重みで効率的に機胜したす。

O((V + E) log V)
O(V)
graphshortest-path
Start Learning

A* Search Algorithm

Advanced

A best-first search algorithm that finds the shortest path using heuristics. Combines Dijkstra's algorithm and greedy best-first search using f(n) = g(n) + h(n). Widely used in games, robotics, and GPS navigation for efficient pathfinding.

O(E)
O(V)
graphpathfinding
Start Learning

Kruskal's Algorithm

Advanced

Finds the Minimum Spanning Tree (MST) of a weighted undirected graph. Uses a greedy approach by sorting edges by weight and adding them if they don't create a cycle. Employs Union-Find for efficient cycle detection. Essential for network design and clustering.

O(E log E)
O(V)
graphmst
Start Learning

Prim's Algorithm

Intermediate

Finds the Minimum Spanning Tree (MST) by growing a tree from a starting vertex. Always adds the minimum weight edge connecting a vertex in the tree to one outside. Uses a priority queue for efficient edge selection. Ideal for dense graphs.

O(E log V)
O(V)
graphmst
Start Learning

Topological Sort

Intermediate

Orders vertices of a Directed Acyclic Graph (DAG) such that for every edge u→v, u comes before v. Uses DFS-based approach. Essential for dependency resolution, build systems, and course scheduling.

O(V + E)
O(V)
graphdag
Start Learning

PageRank

Advanced

Google's algorithm for ranking web pages by link structure. Computes importance scores iteratively.

O(iterations × (V + E))
O(V)
graphranking
Start Learning

Cycle Detection (Floyd's Algorithm)

Intermediate

Also known as the 'tortoise and hare' algorithm, this elegant technique detects cycles in linked lists or sequences using O(1) space. Uses two pointers moving at different speeds—if there's a cycle, they will eventually meet. Essential for detecting infinite loops, analyzing graph structures, and validating data integrity.

O(V + E)
O(V)
graphdfs
Start Learning

Bellman-Ford Algorithm

Advanced

Single-source shortest path algorithm that handles negative weights and detects negative cycles. Relaxes all edges V-1 times to guarantee correct distances even with negative weights. Essential for currency arbitrage detection, network routing with varied costs, and situations where Dijkstra's algorithm fails. Trades speed for flexibility.

O(V × E)
O(V)
graphshortest-path
Start Learning

Floyd-Warshall Algorithm

Advanced

All-pairs shortest path algorithm that computes distances between every pair of vertices in O(V³) time. Uses dynamic programming with elegant three-line core logic. Handles negative weights and provides transitive closure. Ideal for dense graphs, network analysis, and when all pairwise distances are needed.

O(V³)
O(V²)
graphall-pairs-shortest-paths
Start Learning

Kruskal's MST Algorithm

Intermediate

Greedy algorithm that builds a minimum spanning tree by adding edges in order of increasing weight, using union-find to avoid cycles. Efficient for sparse graphs with time complexity O(E log E). Applications include network design, clustering, approximation algorithms, and understanding greedy correctness proofs.

O(E log E)
O(V)
graphminimum-spanning-tree
Start Learning

Prim's MST Algorithm

Intermediate

Greedy algorithm that grows a minimum spanning tree by repeatedly adding the cheapest edge connecting the tree to a new vertex. Uses a priority queue for efficiency with O(E log V) time. Preferred for dense graphs and real-time applications like network broadcasting and circuit design.

O(E log V)
O(V)
graphminimum-spanning-tree
Start Learning

💡 孊習のヒント

基瀎を固めるために初玚レベルのアルゎリズムから始め、䞭玚および䞊玚のトピックに進んでください。各アルゎリズムには、むンタラクティブな可芖化、耇雑床分析、耇数の蚀語でのコヌド䟋が含たれおいたす。