数孊アルゎリズムBeginner

ナヌクリッドの互陀法GCD

玀元前300幎頃の叀代アルゎリズムで、2぀の敎数の最倧公玄数を効率的に蚈算したす。GCD(a, b) = GCD(b, a mod b)ずいう原理に基づいおいたす。継続的に䜿甚されおいる最も叀いアルゎリズムの1぀で、数論、暗号孊、分数の簡玄化の基瀎を圢成しおいたす。

#mathematical#number-theory#ancient-algorithm#gcd-lcm

Complexity Analysis

Time (Average)

O(log min(a, b))

Expected case performance

Space

O(1)

Memory requirements

Time (Best)

O(log min(a, b))

Best case performance

Time (Worst)

O(log min(a, b))

Worst case performance

Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pause← → StepR Reset1-4 Speed

Real-time Statistics

Algorithm Performance Metrics

Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0

Algorithm Visualization

Step 1 of 0

Initialize array to begin

Default
Comparing
Swapped
Sorted

Code Execution

Currently executing
Previously executed

Implementation

Euclidean Algorithm (GCD) - Algorithm Vision | Algorithm Vision