GraphalgorithmenIntermediate

Prims Algorithmus

Findet den minimalen Spannbaum (MST), indem ein Baum von einem Startknoten aus wachst. Fugt immer die Kante mit minimalem Gewicht hinzu, die einen Knoten im Baum mit einem ausserhalb verbindet. Verwendet eine Priority Queue fur effiziente Kantenauswahl. Ideal fur dichte Graphen.

#graph#mst#greedy#priority-queue

Complexity Analysis

Time (Average)

O(E log V)

Expected case performance

Space

O(V)

Memory requirements

Time (Best)

O(E log V)

Best case performance

Time (Worst)

O(E log V)

Worst case performance

📚 CLRS Reference

Introduction to AlgorithmsChapter 23Section 23.2

Presets:
Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pause StepR Reset1-4 Speed

Real-time Statistics

Algorithm Performance Metrics

Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0

Algorithm Visualization

Step 1 of 0

Initialize array to begin

Default
Comparing
Swapped
Sorted

Code Execution

Currently executing
Previously executed

Implementation

Prim's Algorithm - Algorithm Vision | Algorithm Vision