GraphalgorithmenAdvanced

Floyd-Warshall-Algorithmus

All-Pairs-Kurzester-Pfad-Algorithmus, der Distanzen zwischen jedem Knotenpaar in O(V^3) Zeit berechnet. Verwendet dynamische Programmierung mit eleganter dreizeiliger Kernlogik. Behandelt negative Gewichte und liefert transitiven Abschluss. Ideal fur dichte Graphen, Netzwerkanalyse und wenn alle paarweisen Distanzen benotigt werden.

#graph#all-pairs-shortest-paths#dynamic-programming#transitive-closure

Complexity Analysis

Time (Average)

O(VÂł)

Expected case performance

Space

O(VÂČ)

Memory requirements

Time (Best)

O(VÂł)

Best case performance

Time (Worst)

O(VÂł)

Worst case performance

📚 CLRS Reference

Introduction to Algorithms‱Chapter 25‱Section 25.2

Each row on a new line, comma-separated

How it works

  • ‱ All-pairs shortest paths algorithm
  • ‱ Uses dynamic programming approach
  • ‱ O(VÂł) time, O(VÂČ) space complexity
  • ‱ Handles negative edge weights
  • ‱ Formula: dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])
Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pause← → StepR Reset1-4 Speed

Real-time Statistics

Algorithm Performance Metrics

Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0

Algorithm Visualization

Step 1 of 0

Initialize array to begin

Default
Comparing
Swapped
Sorted

Code Execution

Currently executing
Previously executed

Implementation

Floyd-Warshall Algorithm - Algorithm Vision | Algorithm Vision