GraphalgorithmenAdvanced
Floyd-Warshall-Algorithmus
All-Pairs-Kurzester-Pfad-Algorithmus, der Distanzen zwischen jedem Knotenpaar in O(V^3) Zeit berechnet. Verwendet dynamische Programmierung mit eleganter dreizeiliger Kernlogik. Behandelt negative Gewichte und liefert transitiven Abschluss. Ideal fur dichte Graphen, Netzwerkanalyse und wenn alle paarweisen Distanzen benotigt werden.
#graph#all-pairs-shortest-paths#dynamic-programming#transitive-closure
Complexity Analysis
Time (Average)
O(VÂł)Expected case performance
Space
O(VÂČ)Memory requirements
Time (Best)
O(VÂł)Best case performance
Time (Worst)
O(VÂł)Worst case performance
đ CLRS Reference
Introduction to AlgorithmsâąChapter 25âąSection 25.2
Each row on a new line, comma-separated
How it works
- âą All-pairs shortest paths algorithm
- âą Uses dynamic programming approach
- âą O(VÂł) time, O(VÂČ) space complexity
- âą Handles negative edge weights
- âą Formula: dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])
Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pauseâ â StepR Reset1-4 Speed
Real-time Statistics
Algorithm Performance Metrics
Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0
Algorithm Visualization
Step 1 of 0
Initialize array to begin
Default
Comparing
Swapped
Sorted
Code Execution
Currently executing
Previously executed
Implementation