동적 ν”„λ‘œκ·Έλž˜λ°Intermediate

졜μž₯ 곡톡 λΆ€λΆ„ μˆ˜μ—΄ (LCS)

두 μ‹œν€€μŠ€μ— λ™μΌν•œ μˆœμ„œλ‘œ μ‘΄μž¬ν•˜λŠ” κ°€μž₯ κΈ΄ λΆ€λΆ„ μˆ˜μ—΄μ„ μ°ΎμŠ΅λ‹ˆλ‹€. 동적 ν”„λ‘œκ·Έλž˜λ°μ„ μ‚¬μš©ν•˜μ—¬ μ†”λ£¨μ…˜ ν…Œμ΄λΈ”μ„ κ΅¬μΆ•ν•©λ‹ˆλ‹€. DNA μ„œμ—΄ μ •λ ¬, 파일 차이 도ꡬ(diff), ν‘œμ ˆ 감지 λ“±μ˜ μ‘μš© ν”„λ‘œκ·Έλž¨μ΄ μžˆμŠ΅λ‹ˆλ‹€.

#dynamic-programming#strings#sequences#optimization

Complexity Analysis

Time (Average)

O(m Γ— n)

Expected case performance

Space

O(m Γ— n)

Memory requirements

Time (Best)

O(m Γ— n)

Best case performance

Time (Worst)

O(m Γ— n)

Worst case performance

πŸ“š CLRS Reference

Introduction to Algorithmsβ€’Chapter 15β€’Section 15.4

LCS finds the longest subsequence common to both strings

Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pause← β†’ StepR Reset1-4 Speed

Real-time Statistics

Algorithm Performance Metrics

Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0

Algorithm Visualization

Step 1 of 0

Initialize array to begin

Default
Comparing
Swapped
Sorted

Code Execution

Currently executing
Previously executed

Implementation

Longest Common Subsequence (LCS) - Algorithm Vision