λ¨Έμ λ¬λ μκ³ λ¦¬μ¦Intermediate
K-Means ν΄λ¬μ€ν°λ§
λ°μ΄ν°λ₯Ό kκ°μ ν΄λ¬μ€ν°λ‘ λΆν νλ κΈ°λ³Έμ μΈ λΉμ§λ λ¨Έμ λ¬λ μκ³ λ¦¬μ¦μ λλ€. μ μ κ°μ₯ κ°κΉμ΄ μ€μ¬μ ν λΉνκ³ μ€μ¬ μμΉλ₯Ό λ°λ³΅μ μΌλ‘ μ λ°μ΄νΈν©λλ€. κ³ κ° μΈλΆν, μ΄λ―Έμ§ μμΆ, νμμ λ°μ΄ν° λΆμμ λ리 μ¬μ©λ©λλ€.
#machine-learning#clustering#unsupervised#k-means++#data-science
Complexity Analysis
Time (Average)
O(n Γ k Γ i Γ d)Expected case performance
Space
O(n + k)Memory requirements
Time (Best)
O(n Γ k Γ i Γ d)Best case performance
Time (Worst)
O(n Γ k Γ i Γ d)Worst case performance
11 data points
How it works
- β’ Partition n points into k clusters
- β’ Minimize within-cluster variance
- β’ Iterative algorithm
- β’ O(n Γ k Γ iterations) time complexity
- β’ Used in data mining and pattern recognition
Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pauseβ β StepR Reset1-4 Speed
Real-time Statistics
Algorithm Performance Metrics
Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0
Algorithm Visualization
Step 1 of 0
Initialize array to begin
Default
Comparing
Swapped
Sorted
Code Execution
Currently executing
Previously executed
Implementation