Programmation dynamiqueBeginner

Fibonacci (Programmation dynamique)

Calcule efficacement les nombres de Fibonacci en utilisant la programmation dynamique pour éviter les calculs redondants. Démontre la puissance de la mémoïsation pour transformer une solution récursive en temps exponentiel en un algorithme en temps linéaire. Une introduction classique aux concepts de programmation dynamique.

#dynamic-programming#memoization#recursion#optimization

Complexity Analysis

Time (Average)

O(n)

Expected case performance

Space

O(n)

Memory requirements

Time (Best)

O(n)

Best case performance

Time (Worst)

O(n)

Worst case performance

📚 CLRS Reference

Introduction to AlgorithmsChapter 15Section 15.1

Note: Higher values may generate many visualization steps due to recursion

Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pause StepR Reset1-4 Speed

Real-time Statistics

Algorithm Performance Metrics

Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0

Algorithm Visualization

Step 1 of 0

Initialize array to begin

Default
Comparing
Swapped
Sorted

Code Execution

Currently executing
Previously executed

Implementation

Fibonacci Sequence - Algorithm Vision