機械孊習アルゎリズムIntermediate

K-Meansクラスタリング

デヌタをk個のクラスタに分割するための基本的な教垫なし機械孊習アルゎリズムです。点を最も近いセントロむドに繰り返し割り圓お、セントロむドの䜍眮を曎新したす。顧客セグメンテヌション、画像圧瞮、探玢的デヌタ分析で広く䜿甚されおいたす。

#machine-learning#clustering#unsupervised#k-means++#data-science

Complexity Analysis

Time (Average)

O(n × k × i × d)

Expected case performance

Space

O(n + k)

Memory requirements

Time (Best)

O(n × k × i × d)

Best case performance

Time (Worst)

O(n × k × i × d)

Worst case performance

11 data points

How it works

  • • Partition n points into k clusters
  • • Minimize within-cluster variance
  • • Iterative algorithm
  • • O(n × k × iterations) time complexity
  • • Used in data mining and pattern recognition
Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pause← → StepR Reset1-4 Speed

Real-time Statistics

Algorithm Performance Metrics

Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0

Algorithm Visualization

Step 1 of 0

Initialize array to begin

Default
Comparing
Swapped
Sorted

Code Execution

Currently executing
Previously executed

Implementation

K-Means Clustering - Algorithm Vision | Algorithm Vision