動的計画法Beginner

フィボナッチ数列(動的計画法)

動的計画法を使用して冗長な計算を避けながらフィボナッチ数を効率的に計算します。メモ化の力を示し、指数時間の再帰的解を線形時間アルゴリズムに変換します。動的計画法の概念への古典的な入門です。

#dynamic-programming#memoization#recursion#optimization

Complexity Analysis

Time (Average)

O(n)

Expected case performance

Space

O(n)

Memory requirements

Time (Best)

O(n)

Best case performance

Time (Worst)

O(n)

Worst case performance

📚 CLRS Reference

Introduction to AlgorithmsChapter 15Section 15.1

Note: Higher values may generate many visualization steps due to recursion

Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pause StepR Reset1-4 Speed

Real-time Statistics

Algorithm Performance Metrics

Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0

Algorithm Visualization

Step 1 of 0

Initialize array to begin

Default
Comparing
Swapped
Sorted

Code Execution

Currently executing
Previously executed

Implementation

Related Algorithms

View all in 動的計画法
Fibonacci Sequence - Algorithm Vision