動的計画法Beginner
フィボナッチ数列(動的計画法)
動的計画法を使用して冗長な計算を避けながらフィボナッチ数を効率的に計算します。メモ化の力を示し、指数時間の再帰的解を線形時間アルゴリズムに変換します。動的計画法の概念への古典的な入門です。
#dynamic-programming#memoization#recursion#optimization
Complexity Analysis
Time (Average)
O(n)Expected case performance
Space
O(n)Memory requirements
Time (Best)
O(n)Best case performance
Time (Worst)
O(n)Worst case performance
📚 CLRS Reference
Introduction to Algorithms•Chapter 15•Section 15.1
Note: Higher values may generate many visualization steps due to recursion
Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pause← → StepR Reset1-4 Speed
Real-time Statistics
Algorithm Performance Metrics
Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0
Algorithm Visualization
Step 1 of 0
Initialize array to begin
Default
Comparing
Swapped
Sorted
Code Execution
Currently executing
Previously executed
Implementation