Algorithmes de grapheIntermediate

Tri topologique

Ordonne les sommets d'un graphe acyclique dirigé (DAG) de sorte que pour chaque arête u→v, u vienne avant v. Utilise une approche basée sur DFS. Essentiel pour la résolution de dépendances, les systèmes de construction et la planification de cours.

#graph#dag#dfs#dependency

Complexity Analysis

Time (Average)

O(V + E)

Expected case performance

Space

O(V)

Memory requirements

Time (Best)

O(V + E)

Best case performance

Time (Worst)

O(V + E)

Worst case performance

📚 CLRS Reference

Introduction to AlgorithmsChapter 22Section 22.4

Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pause StepR Reset1-4 Speed

Real-time Statistics

Algorithm Performance Metrics

Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0

Algorithm Visualization

Step 1 of 0

Initialize array to begin

Default
Comparing
Swapped
Sorted

Code Execution

Currently executing
Previously executed

Implementation

Topological Sort - Algorithm Vision | Algorithm Vision