Algorithmes mathématiquesBeginner

Algorithme d'Euclide (PGCD)

Algorithme ancien d'environ 300 av. J.-C. qui calcule efficacement le plus grand commun diviseur de deux entiers. Basé sur le principe que PGCD(a, b) = PGCD(b, a mod b). L'un des plus anciens algorithmes en usage continu, formant la base de la théorie des nombres, de la cryptographie et de la simplification des fractions.

#mathematical#number-theory#ancient-algorithm#gcd-lcm

Complexity Analysis

Time (Average)

O(log min(a, b))

Expected case performance

Space

O(1)

Memory requirements

Time (Best)

O(log min(a, b))

Best case performance

Time (Worst)

O(log min(a, b))

Worst case performance

Step: 1 / 0
500ms
SlowFast
Keyboard Shortcuts
Space Play/Pause StepR Reset1-4 Speed

Real-time Statistics

Algorithm Performance Metrics

Progress0%
Comparisons
0
Swaps
0
Array Accesses
0
Steps
1/ 0

Algorithm Visualization

Step 1 of 0

Initialize array to begin

Default
Comparing
Swapped
Sorted

Code Execution

Currently executing
Previously executed

Implementation

Euclidean Algorithm (GCD) - Algorithm Vision | Algorithm Vision